Modeling and optimization of hourglass-shaped aquaporins
نویسندگان
چکیده
منابع مشابه
Optimizing water permeability through the hourglass shape of aquaporins.
The ubiquitous aquaporin channels are able to conduct water across cell membranes, combining the seemingly antagonist functions of a very high selectivity with a remarkable permeability. Whereas molecular details are obvious keys to perform these tasks, the overall efficiency of transport in such nanopores is also strongly limited by viscous dissipation arising at the connection between the nan...
متن کاملAquaporins Production Optimization and Characterization
Aquaporins are water facilitating proteins embedded in the cellular membranes. Such channels have been identified in almost every living organism – including humans. They are vital molecules and their malfunction can lead to several severe disorders. An increased understanding of their structure, function and regulation is of utmost importance for developing current and future drugs. The first ...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Molecular Dynamics Simulation of the Effect of Angle Variation on Water Permeability through Hourglass-Shaped Nanopores
Water transport through aquaporin water channels occurs extensively in cell membranes. Hourglass-shaped (biconical) pores resemble the geometry of these aquaporin channels and therefore attract much research attention. We assumed that hourglass-shaped nanopores are capable of high water permeation like biological aquaporins. In order to prove the assumption, we investigated nanoscale water tran...
متن کاملHourglass-Shaped Dendrimers on Surfaces: A Comparison of Different Scanning-Tunneling-Microscopy Approaches
Large molecules adsorbed on surfaces can be analyzed by scanning tunneling microscopy (STM) under various environmental conditions: on a dry surface in air or vacuum, and at the solid-liquid interface. However, can measurements under dissimilar conditions be compared, e. g., when sample Awas studied at the solid-liquid interface and sample B in a dry environment? Only rarely can the same substa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Models and Methods in Applied Sciences
سال: 2018
ISSN: 0218-2025,1793-6314
DOI: 10.1142/s0218202518500422